×

 

Рекомендуем


Наши партнёры

 

 





Главная  /  Каталог статей  /  Электроснабжение, электрооборудование

Автономный дом. Часть первая – альтернатор

Состоят электрогенераторы из двух основных агрегатов – альтернатора и силовой установки, приводящей генератор в действие. В этой статье будут изучаться разнотипные альтернаторы.

Базовую основу установок, генерирующих электричество с помощью электромагнитов, разработал в 1831 году британский физик и экспериментатор Майкл Фарадей, он же построил один из первых действующих генераторов – диск Фарадея. За последующие полтора века электрогенераторы неоднократно совершенствовались. Были созданы синхронные и асинхронные альтернаторы, трех и однофазные, с инверторным управлением и без него. Чем же они отличаются друг от друга?

Синхронные генераторы

Синхронный альтернатор производит электроэнергию с совпадением частот вращения ротора и статора. Магнитные полюса ротора формируют поле, при пересечении которым стартерной обмотки создается электродвижущая сила (ЭДС). Ротор в таком генераторе представляет собой электромагнит либо постоянный магнит, имеющий кратное двум число полюсов – 2,4,6 и т.д. В резервных генераторах устанавливается двухполюсный ротор с частотой вращения 3000 оборотов в минуту, в основных, вырабатывающих электроэнергию 24 часа в сутки, частота вращения ротора составляет 1500 об/мин.

 

Синхронный альтернатор

После пуска в работу ротор синхронного генератора формирует достаточно слабое магнитное поле. Число его оборотов постепенно нарастает, повышая ЭДС. Стабильность напряжения на выходе контролируется путем изменения магнитного поля через блок AVR (автоматической регулировки), при поступлении напряжения с обмотки возбуждения на ротор. Для синхронных электрогенераторов характерна «реакция якоря» - активация индуктивной нагрузки приводит к размагничиванию генератора, напряжение при этом падает. Если же подается емкостная нагрузка, то генератор подмагничивается, а напряжение будет расти.

Преимущество синхронных генераторов в стабильности напряжения на выходе, их недостаток – склонность к перегрузкам, возможным при росте нагрузок с превышением допустимого уровня (блок AVR чрезмерно увеличивает ток в роторной обмотке).

Синхронный электрогенератор кратковременно производит на выдаче ток, превышающий номинальное значение раза в три-четыре. А поскольку некоторые виды электроприборов – насосы, компрессоры, электродвигатели и некоторые другие – нуждаются в повышенном стартовом токе и вызывают реактивную нагрузку на сеть, то для них идеальным источником резервного или основного питания служат именно такие альтернаторы.

 

 

Асинхронные генераторы

В асинхронном генераторе вращение ротора происходит с небольшим опережением оборотов магнитного поля, создаваемого статором. Такие электрогенераторы комплектуются роторами с двумя типами обмотки – фазной и короткозамкнутой. Принцип работы асинхронного альтернатора совпадает с его синхронным аналогом – статор на вспомогательной обмотке создает магнитное поле, передающееся ротору и формирующее ЭДС на статорной обмотке. Разница в том, что частота вращения магнитного поля при этом неизменна, т.е. ее регулировка недопустима. В результате напряжение и частота электрического тока, вырабатываемого альтернатором, напрямую связана с числом оборотов ротора, зависящих в свою очередь от того, насколько стабильно работает приводной двигатель электрогенератора.

Асинхронные альтернаторы малочувствительны к короткому замыканию и обладают высокой защитой от воздействий извне, что делает их незаменимыми для сварочных аппаратов. Такие модели генераторов отлично подойдут для запитывания бытовых приборов с омической (активной) нагрузкой, преобразующих в работу практически всю поставляемую им электроэнергию – нагреватели, кухонные конфорки, осветительные лампы, компьютеры и т.д.Асинхронный альтернатор

Высокая стартовая (реактивная) нагрузка, вызванная включением в работу, к примеру, насосного оборудования, продолжается не более секунды, но электрогенератор обязан ее выдержать. Ситуация здесь примерно такая – представьте, что вам нужно сдвинуть с места тяжело нагруженную тележку, установленную на плоской горизонтальной поверхности. Чтобы заставить эту тележку двигаться, нужно приложить значительно большее усилие, чем необходимо для поддержания ее дальнейшего движения – в случае компрессора сплит-системы или холодильника, любых насосов и электродвигателей, ситуация именно такова и справиться с ней может только синхронный электрогенератор.

В центральной электросети реактивные нагрузки компенсируются, в зависимости от их типа – индуктивные или емкостные – с помощью конденсаторов или дросселей, а также за счет трансформаторов и намеренно завышенного сечения электрических кабелей.

Несмотря на явный недостаток – асинхронный альтернатор не выдерживает повышенных нагрузок – он дешевле и проще по свой конструкции, чем его синхронный аналог. Кроме того, «закрытая» конструкция асинхронных электрогенераторов обеспечивает им высокую защиту от внешних загрязнений и влаги.

Однофазный или трехфазный генератор?

Многие домовладельцы убеждены, что трехфазный генератор электроэнергии лучше, чем однофазный. Для неискушенных в электрике граждан логика тут простая – три фазы больше, чем одна, а значит лучше. В действительности выбор между одно- и трехфазным энергоснабжением основывается на нуждах конечных потребителей.

Электрогенератор с тремя фазами предназначен вовсе не для трех групп однофазных потребителей, а для запитывания трехфазных устройств. Выполнять разводку трехфазного ввода в дом на однофазные группы выгодно не его жильцам, а электромонтажникам – при этом необходима дорогостоящая защита энергосистемы, на монтаже которой можно неплохо заработать. Между тем современная бытовая техника, как правило, однофазная – потребление трех фаз было характерно для устаревших моделей электрических плит и электродвигателей.

Трехфазные электростанции имеют один общий недостаток – если мощность такого альтернатора равна, допустим, 10 кВт, то на каждую фазу придется только 3,3 кВт. Максимальное смещение мощностной нагрузки среди фаз не должно превысить 25% от номинала, равного 1/3 суммарной мощности генератора. Поэтому 4,5 кВт однофазный генератор будет в итоге мощнее, чем трехфазник на 10 кВт.

Инверторный генератор

Электронный блок управления инверторным альтернатором обеспечивает выработку электричества наилучшего качества, с полным отсутствием перепадов напряжения. Альтернаторы-инверторы идеально подходят для запитывания потребителей, нуждающихся в напряжении исключительно на номинальном уровне.

Инверторная система управления устанавливается на синхронный альтернатор. Она действует в три этапа: производит напряжение, имеющее частоту 20 Гц; формирует из него постоянный ток 12 В; преобразует постоянный ток в номинальный переменный с частотой 50 Гц.

Инверторный генератор<Генераторы-инверторы по импульсному напряжению на выходе подразделяются на три вида:

  • прямоугольный импульс характерен для наиболее дешевых моделей, способных запитать только строительный электроинструмент. Ввиду ограниченных возможностей и слабой популярности, этот вид инверторов практически исчез из продажи;
  • трапециевидный импульс обеспечивают генераторы среднего ценового диапазона, что позволяет им исправно снабжать энергией сложные виды бытовых электроприборов, к примеру, холодильник. Однако такое качество напряжения может оказаться недостаточным для наиболее чувствительной техники;
  • синусоидальный импульс создает наилучшие условия для работы приборов любого типа – как наиболее простых, так и самых сложных. Характеристики синусоидального напряжения стабильны и в точности соответствуют параметрам электричества, поставляемого центральными электросетями. Цена инверторов, дающих на выходе синусоиду, по сравнению с двумя другими видами наиболее высока.

Достоинства инверторных электрогенераторов:

  • значительно меньшие размеры и вес, по сравнению с обычными генераторами равной мощности;
  • малая шумность в ходе работы, достигаемая за счет изменяемой скорости вращения ротора;
  • минимальный расход топлива, благодаря электронному управлению процессом выработки электроэнергии. Генератор производит столько мощности, сколько требуется потребителям в данный момент – при увеличении или уменьшении их числа производительность прибора, соответственно, возрастает или уменьшается;
  • поскольку их базовая основа – синхронный альтернатор, инверторы способны кратковременно снабжать энергоемкое оборудование высокими пусковыми токами. Более того – некоторые модели инверторных генераторов оснащены функцией «режим перегрузки», в котором они производят на 50% больше мощности, чем номинальная. Данный режим действует не более 20-30 минут;
  • наработка на отказ – в среднем 3000 часов.

Их недостатки:

  • максимальный срок непрерывной работы – не более 8 часов;
  • стоимость немногим выше, чем у не инверторных аналогов схожей мощности;
  • электронный блок управления инверторов чувствителен к температурным перепадам, в случае его поломки ремонт будет недешев;
  • наибольшая мощность инверторных генераторов – 7,2 кВт, модели большей мощности не производятся.

В завершение

Рассмотренные типы альтернаторов, за исключением инверторных, применяются не только в бытовых (маломощных) моделях электростанций, но и в конструкции крупнейших генераторных систем, вырабатывающих мегаватты электрической энергии.

Следующий материал будет посвящен двигателям внутреннего сгорания, выступающих в роли силовых установок в составе электрогенераторов. Разумеется, привод для альтернатора может быть осуществлен не только от моторов, работающих на дизтопливе, бензине или газе, но и от установок, использующих для вращения ротора энергию ветра или воды – они будут исследованы в одной из последующих статей.
 

 

18.02.2014
Автор текста: Абдюжанов Рустам



Понравилась статья? Поделись с друзьями:


Данный текст статьи защищен авторскими правами! Любое копирование возможно, только после письменного согласия администрации.